skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Martinson, Brian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Artificial Intelligence (AI) methods are valued for their ability to predict outcomes from dynamically complex data. Despite this virtue, AI is widely criticized as a “black box” i.e., lacking mechanistic explanations to accompany predictions. We introduce a novel interdisciplinary approach that balances the predictive power of data-driven methods with theory-driven explanatory power by presenting a shared use case from four disciplinary perspectives. The use case examines scientific career trajectories through temporally complex, heterogeneous bibliographic big data. Topics addressed include: data representation in complex problems, trade-offs between theoretical, hypothesis driven, and data-driven approaches, AI trustworthiness, model fairness, algorithm explainability and AI adoption/usability. Panelists and audience members will be prompted to discuss the value of approach presented versus other ways to address the challenges raised by the panel, and to consider their limitations and remaining challenges. 
    more » « less